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Abstract

We consider the interrogation by means of a pulsed planar electromagnetic wave of a dielectric
slab with a supraconductive backing. Previous work using a weak formulation with finite ele-
ments (FE) demonstrated the ability to determine material parameters and the slab thickness in
the inverse problem. In this work we report on results using Proper Orthogonal Decomposition
(POD) to create a more efficient set of basis functions than the standard FE basis functions.
We first demonstrate the ability of the reduced basis POD formulation to capture the electro-
magnetic behavior in the case of the forward problem. We then apply the POD formulation
to the inverse scattering problem with unknown parameters and show that the POD formula-
tion provides a considerable reduction in computational time over standard FE methods with
comparable ability to recover the unknown parameter values.
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1 INTRODUCTION

Determination of material properties by means of a non-invasive probes such as low energy electromag-
netic pulses is desirable in a broad range of applications in biology [1] and industry. Previous work has
shown how metallic or other reflective backings could be exploited to obtain information about mate-
rial properties and geometry [10]. In that work, a finite element (FE) based variational formulation
was employed that incorporated Maxwell’s full equations, the antenna source current, and constitu-
tive polarization models (Debye or Lorentz). Application of the FE variational formulation to a 1D
pulsed input scattering problem demonstrated the ability to capture the electromagnetic behavior in
the forward problem. Using windowed microwave pulses in a FE variational formulation, the authors of
[10] were able to effectively utilize the two reflected signals (from the air-dielectric interface and from
the dielectric-backing interface) to estimate material dielectric properties and material thickness in the
inverse problem.

Solution of the inverse problem to identify material properties can be time consuming, however, since it
requires repeated calls to the forward finite element simulation, whose solution time grows as the square
of the number of nodes. In an effort to reduce computational time we have implemented a reduced order
formulation of the variational approach of Banks, et al.[10]. In place of the finite element basis functions
our variational formulation uses basis elements obtained through application of the method of proper
orthogonal decomposition (POD) to standard finite element computational results.

Our efforts reported on here were motivated by the very successful use of POD-based reduced order
methods in other electromagnetic interrogation problems. In [9, 11] the authors considered eddy current
based methods for interrogaton of dielectric materials for anomalies (flaws, damages, etc.). Through
both computational and experimental validation efforts, they demonstrated the enormous potential
for computational savings in this class of problems. These efforts, however, employed eddy currents
originating from smooth (uniform) AC signals in conductive sheets. This permitted the reduction of the
associated time domain Maxwell’s equation system to a phasor form involving harmonic systems without
transients. A question of great interest is whether the reduced order ideas of [9, 11] can be successfully
employed in electromagnetic interrogation problems where the interrrogating signal is a microwave pulse
and the resulting dielectric interface reflections/transmissions involve transients that must be accurately
computed in order to perform the material identification characterization desired. In this paper we
present the first evidence that this question can be answered in the affirmative.

Proper orthogonal decomposition, also known as principal component analysis [21] and Karhunen-Loeve
expansion [22, 26], is a well known method for feature extraction in statistical and pattern recognition
fields [18]. The POD method has also been applied in a wide variety of other fields such as materials
processing [12, 23, 24, 29, 35], characterization of human faces [33], and turbulent coherent flows ([4, 14,
15, 16, 19, 27, 34] - see also the surveys [13, 28]).

The POD method linearly transforms a multivariate data set into an optimal set of uncorrelated variables
(POD modes). The original multivariate data can be written as linear combinations of the POD modes.
In many cases the POD modes more efficiently describe the variability of the original data and some
dimensional reduction is possible by retaining only the most important modes.

Recent use of POD for reduction of order in distributed parameter systems includes as noted above
applications to parameter estimation or inverse problems [9, 11] as well as applications to both open
loop and feedback control design [2, 3, 7, 8, 12, 23, 24, 25, 29, 30, 35]. Computational evidence from a
number of fluid and electromagnetic applications [12, 9, 11, 24, 23] indicates that the important features



of these systems are essentially of low finite dimension and amenable to approximation by a finite span
of appropriately chosen basis elements.

We apply our POD reduced order model to a 1D scattering problem in which a windowed microwave
pulse is incident on a dielectric slab with a supraconductive backing. We present results for the forward
problem which show that the reduced order model is capable of capturing the electromagnetic behavior
using significantly fewer modes than the FEM. We then apply the reduced order model to the inverse
problem and show that the reduced order model is capable of accurately estimating the parameters with
a significant reduction in computational time over the standard FEM. We believe that this work demon-
strates the feasibility of utilizing the POD reduced order variational method for parameter estimation
in transient electromagnetic systems when computational time is an important consideration.

2 Problem Formulation and Approximations

The physical problem. Consider the problem of interrogating an infinite (in the x and y directions)
slab of homogeneous material by a windowed microwave pulse (Fig. 1). The interrogating signal is
chosen to be a polarized planar electromagnetic wave normally incident on an infinite slab of material
contained in the interval [z1, z5] with faces parallel to the zy plane. The electric field is polarized with
oscillations in the xzz plane only. The slab will be denoted by €2 and the region exterior to the slab by
Qo.

E(t,2)

2] — Z
/ 1 ”

H(t,2)

Q, Q

Figure 1: Geometry of the 1D scattering problem.

The electric and magnetic fields in Q and Qg are governed by the macroscopic Maxwell’s equations (see,



for example, [20])

7 B
VxE = —%52, . .
— 8;%)? - D = eE+P,
VXH = ¢+d B = uH+ e, (2.1)
vq = p, J = JC+JS,
V-B =0

The vector-valued functions E and H represent the strengths of the electric and magnetic fields, respec-
tively, while D and B are the electrlc and magnetic fluxes, respectively. The conduction and source
current densities are represented by J. and Js, respectively. The electric and magnetic polarizabilities
are represented by P and M respectively. The electric and magnetic susceptibilities are represented by
€0 and pg, respectively and the density of free electric charge is represented by p.

The domain g is treated as empty space. As such, M = 0, P = 0, and fc = 0. In addition, it is
assumed that all parameters necessary for the determination of the fields are known in this region. The
source current J, is generated by an infinite antenna along the z axis and hence will only be nonzero at
these points in (2; its time-varying component will generate the interrogating electromagnetic waves.

For the purposes of this study, we will make certain assumptions about the material properties of the
domain €2, neglecting magnetic effects and assuming that Ohm’s law governs the electrical conductivity.
Thus we have
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Polarization model. For simplicity, we treat the instantaneous polarization to be proportional to the
electric field so that Pm =€ xE where x is a dielectric constant. The electric flux density in (2.1) then
can be written as . . L.
D = 60E + 60XE —|— P
= 60(1+X)E+P (2.3)
= eoerE + P

where €, = 1 + x > 1 is the relative permeability. The parameter €, is a spatially-dependent parameter
that allows for instantaneous effects on the the displacement in €2 due to the electric field originating in
Q. The remainder of the macroscopic electric polarizability of the medium (2 is denoted by P and is
represented as an integral representation dependent upon a dielectric response function (DRF) and the
past history of the electric field (for a discussion of this model and its relationship to other models in
the literature, see [10], pg. 10)

¢
Bt 7) = / o(t — 5,7) B (s, 2)ds, (2.4)
0
where it is assumed that B(0,#) = 0.

In particular, we choose the Debye model [10, 17] for orientational or dipolar polarization in © described
by )

PHP = eoles — ) (2.5)
= €€l + P,

ol

where €, is the static relative permeability. The Debye model corresponds to g(t) = e */7eg(es — €00 ) /T
n (2.4) and models the behavior of materials whose molecules possess permanent dipole moments.



The magnitude of the polarization P represents the degree of alignment of the individual moments.
Comparing (2.5) and (2.3), one finds that

€ In Q)
er _{ 1 inQp. ° (2:6)

for the Debye polarization model.

Mathematical formulation. Using (2.1) and the condition of a plane-polarized interrogating input
signal, one can argue (see [10]) that E(t,#) = iE(t,z) and H(t,#) = jH(t,2) for scalars E and H in
Qo. As a result, the polarizabilty P and flux density D are confined to the zz plane (with nonzero
components only in the z direction) and can be denoted by scalar values P and D. Since the material
Q is homogeneous in the xy direction, the fields can be represented by scalar values E, H, P, and D in
Q as well. Recalling that J, also lies in the z direction we find that Maxwell’s equations then reduce to

08 _ 00
2.7
—%% = 9 1B+, ®1)

By taking appropriate derivatives, we can combine the equations (2.7) to give

poels + poP + poo B — E' = —po Js, (2.8)

where (2.3) was used to eliminate D, € = ¢(1 + (¢, — 1)Iq), Is denotes an indicator function for set S

(i.e., Is = 1in S and 0 otherwise), ' = 8%, and "= %.

Boundary conditions. An absorbing boundary condition is placed at z = 0 to prevent the reflection
(back into the region of interest) of waves so that
[1 oFE 8E]
2=0

- = 2.
c Ot 0Oz 0, (2.9)

where ¢ = 1/eopo- The boundary conditions at the slab-supraconductive backing boundary are Ba = 0,
which is automatically satisfied, since B = j B, and the condition E x i = 0, which gives |Eyi—E,jlr =0,
so that E, = E, = 0 on the boundary. This is equivalent to E(t,1) = 0 in our system. In addition, the
source current J, is specified at z = 0 (as we have noted along the x-axis).

Method of mappings. While the value of z; is known, the value of 25 is generally unknown. We use
a piece-wise linear mapping that leaves the interval (0,z;) invariant and maps (21,22) to (21,1). The
effect of this mapping [5, 6, 10, 31] is to transform the original unknown geometry o |J Q to one with
a known geometry Q = [0,1]. A new coordinate variable in 0 = [0, 1] can be defined as

~ z, 0<2z< 2, 510
2=1G) = z1+(z—zl)z12__zzl1, 721 <z < 2. (210)
This can also be written as
f(2) =2+ (( = D(z — 21) ]z 201 (2), (2.11)
where ( = zlg_jzll and f'(z) =1+ (¢ — 1)Iq(z). The chain rule is used to convert spatial derivatives to

derivatives in terms of the new variable Z. That is,

o 020 ., .0
— === (2.12)



Using dz = f'(z)dz, one can write the inner products of the weak form as

W = | " o))z

) (2.13)
/1 M)
0o 1+ -1y
Wy = [ () (2)dz
0, o (2.14)
- / (14 (¢~ DIa)d (2)i' ()

Forward or simulation problem. Consider the case of a Debye medium 2 with a supraconductive
backing and €.(z) = €5 defining the instantaneous polarization in Q. We first express (2.8) in an
alternate form by integrating it against a “test” function ¢, obtaining

<H0€E,¢> + <MOUE,¢>+<N0P,¢>

(B",¢) = — <,u0js(t, _)7¢>, (2.15)

where the polarization P is of the form (2.4) and the mapping to Q = [0, 1] has already been carried out.

Integration by parts of (2.15) gives the weak form

(noeE,0) + (mooE,0) + (moP,g) (2.16)
+ (B¢ + L0080 = — (poi(t, ), 9), '

\(ivhe;e the term %E‘(t, 0)#(0) is part of the weak form resulting from the absorbing boundary condition
2.9).

For computational purposes the time variable is scaled by a factor of ¢ = 1/,/éofio (f = ct) and the

polarization P by a factor of 1/ey (P = P/eg). We assume that the electric permittivity and magnetic
permeability of the medium  are constant. The scaled equation becomes

<€TE7 ¢> + o <0E7 ¢> + <P7 ¢>
. . (2.17)
+ (B ) + B(,006(0) = —mo (J(t,), ),
where €.(2) = 1+ Iq(2)(ew — 1) is the relative electric permittivity so that € = €.€p and the impedance
of free space is defined 19 = \/po/€0 = 376.73 Ohms. The inner products < -,- > are the weighted inner
products of (2.13).

FEM discretization. The interval [0,1] is uniformly divided at the points Ejv = ih, where h = 1/N
and ¢ = 0,...,N. The electric and polarization fields £ and P are discretized with N piece-wise
linear spline functions ¢} (2) such that ¢ () = d;; for i,j = 0,...,N. The essential boundary
condition ¢ (1) = 0 is satisfied by omitting ¢% in the finite dimensional approximating subspace



VN = span{¢{’, ¢V, ..., N _,}. The fields are then approximated by
N—1
E(t,z) ~ EN(t,z) = e (1)o7 (2),
foa) (2.18)
P(t,2) = PN(t,2) = Py ()9} (2),
i=0

In order to avoid computational difficulties, we make one further requirement that the material bound-
aries of the slab [z1, 1] coincide with grid points. The grid point coinciding with the material boundary
z1 will be denoted by j = L. By design, the right edge of the material has been mapped to z = 1, which
corresponds to the grid point j = N.

Substitution of the approximations (2.18) into (2.17) yields

N-1 N—1 N—1
e () (ot ) + ey (t) (oo, Z By (t)
i=0 &iol N 11 (2.19)
+ €; ( ¢NI ’ + 6 0) = —To <Js(ta ')a¢>a
i=0 i=
which can be written as
(MY + ME (e0o — 1))EN + (pooME + BM)eN + MY PN + KNeN = no g™ (2.20)
fore = (elf,el,...,eN_,) and p= (p¥,pY,...,pN_,). The elements for the N x N matrices are given
by
1 Y
Iadig; -
MY, = (Iod:. d:) = S £ B
Qij < Q¢z;¢,]> /0 1+(C_]-)IQ 2,
! L
i (ir &) /0 T - (2.21)

BY = 6i(0)¢;(0)
Kj = <¢2,¢;>=/0 (1+ (¢ - 1)Io)diddz,

while the N x 1 finite element vector J% is given by

" .-
. Jsi -
N s¥i
N — _ t,), ;) =— | —__d3. 2.22
Note that the integrals are in terms of the scaled variables of (2.10).

We will use the Debye polarization model (2.5) to provide the constitutive law relating the polarization
P to the electric field E. Applying the same time scaling as above (P = P/ey,t = ct) we obtain

P+ AP =¢\E in Q, (2.23)

where €5 = €; —€x and A = 1/cr. To generalize the above equation to the entire domain we can multiply
the equation by the indicator function Ig(z). Then, applying a Galerkin approximation, we obtain

MY PN + MY AN — MY Aege™ = 0. (2.24)



The combined system of equations is

(MY + M (€0 — 1)EN + MY BN + (oo M + B)eN + KNeN = no gV (2.25)
P+ AN = deseV = 0. '

Substituting the second equation and its derivative into the first, one finds

MN + MY (eso —1))eN  +  (AeaME + noo MY + B)eN
Q Q Q )
+  (=NegMy + KN)eN + X2 MopN = noJN (2.26)
PV 4+ AN — ege¥ = 0.

This can be written as a first-order system with the composite variable z = (e™, pV,¢é") as
M3¥Ng 4 K3N g = 3N (2.27)
or )
I eN o oy —IN eN oN
I PV |+ | Xeally MY, 0N pNl=| oV |, (2.28)
MY || e My My My eV TN
where
MN = MY + (e — 1) MY,
My = —NegMY + KN,
Miv = Mg(/\€d+7’}00')+BN,

and I is the N x N identity matrix where the ones have been replaced with zeros in rows 1 through
L—1.

The form of the source current is chosen to be

Js(t,2) = 0(2)gs(t) L 10,¢,) (1) = —6(2) sin(wi) L(o,¢) (%), (2.30)

where w is a specified angular frequency of the input signal (and the carrier frequency of the resulting
planar wave) and d(z) is the Dirac distribution with infinite mass at z = 0. The signal is truncated at
finite time #; coinciding with gs(#) = 0 by the indicator function I(g,)(t) to avoid complications arising
from discontinuities in the input signal. As a result, wt; = nx for some positive even integer n. The
duration of the pulse must be sufficiently short to distinguish reflections from the front and back of the
medium, thus requiring that ¢yc < 2(z2 — z1). The current matrix then becomes

t)] t
N _ wcos(cgl\)r_(lo,tf)( ) ‘ (2.31)

Solution method. We use the standard Crank-Nicholson scheme to find an approximate solution for
the differential equation system (2.27). Rewriting (2.27) as

@ = f(t,x) = (M3*N)"H(F3N - K3Ng) (2.32)
and choosing a step size k, we make the iterative approximation

Tnt1 = Tn + Kkfnte (2.33)



where z, & z(t,) = z(nk), fonro = (1 — 0)f(tn,zn) + 0f(tnt1,%nt1), and for the Crank-Nicholson
scheme 6 =1/2. This system can be solved directly for z,41

Tnt1 = T + KYn, (2.34)

where B B B
(MY + k9K )y, = F3N) — B3N g, (2.35)

F3N, = (1-0)F3N + 6F3Y,, and zo = 0. Equation (2.35) can be solved by means of block-Gaussian

elimination to a block upper-triangular system, LU factorization, and back-substitution.

Construction of POD modes. Simulation using the finite-element system (2.27) above provides a
multivariate data set consisting of 2K vectors

X={EN...EF...PN...P}} (2.36)

representing the N nodal values of E(t) and P(t) at K time points during the simulation. This original
data set X is transformed to a new set of uncorrelated variables (POD modes) by

W ={w),wl,. .  wh} =X, (2.37)

where the columns of ® = {3, #3K ... #2K} are the eigenvectors of the product matrix (X'X)¢?% =
Xi¢?¥ ranked, in descending order, with respect to the associated eigenvalue and the prime superscript
denotes the transpose of the matrix. The POD modes W are orthogonal w} - w) = X;d; ;, and the
transformation of variables preserves the data variability

2K 2K 2K
Z(XIX)kk = Z(WIW)kk = Z)\k- (2.38)
k=1 k=1 k=1

Expansion of the original data X in terms of the most significant POD modes minimizes the mean square
error of a reduced basis representation[18]

R
(X =D (W) (@), (2.39)
k=1

where R < 2K. The most significant POD modes are those corresponding to the largest eigenvalues,
since the ratio of an eigenvalue to the summation of eigenvalues, A/ E;{ZI Aj, gives the percentage of

the mean square error unaccounted for by eliminating the corresponding POD mode wY in the reduced
basis representation [18]. The best stopping point in the expansion (2.39) depends, in general, upon the
application and various algorithms have been proposed[21].

POD discretization. A second discretization formulation produces the reduced basis model. In this
case, we first use the POD modes {w} } to obtain the POD elements

N
Ui(2) = Y (wp)ivi2), k=1,2,...,2K (2.40)

i=1

where the functions ;(z) are the finite element linear interpolation functions. The electric and polar-
ization fields are approximated as linear combinations of the POD basis elements corresponding to the



most significant POD modes

R
E(t,2) =~ ER(t,2) = ) ef(t)¥F(2)

=t (2.41)
P(t,z) =~ PE(t,2) = > pl(t)¥f(2)

where, in this case, R < N. Application of this approximation in (2.17) (in this case we use POD test
functions ¢; = ¥; i =1,2,..., R) yields a Galerkin-POD system

R R R
SOERw) (6T Ty + Y neel(t) (o, Y + > B () (T, )
7=1 7=1 =1

R R
+ D) (Y + 37 R BR0)BR0) =~ (J,(t,), TF),
=1 =1
(2.42)
which can be written as
(ME + ME(eeo — 1))ER + (nooME + BR)er + MEF? + KBe? = no gt (2.43)
for e = (efl,efl,...,eR), p = (pf,pf,...,pR), and é = éf',eft,. .. ek). The elements for the R x R
matrices are given by
L [ URGR
ME, = (IoUR =/ Skt ik PP
Qij (lo®f, ¥f) o 1+(¢C—-1)Iq
1 YRR
ME = (UE gk :/ — I 4z,
A A VA A ) (2.44)
B = WRO)THO)
1 ~ ~
Kl = (wf gl =/ 1+ (¢ - Do) ¥ ¥z,
0
while the R x 1 finite element vector is
1 T R
. J U
R R et ~
TR == (e w8 = - [ i, (2.45)

and the integrals are in terms of the scaled variables defined in (2.10). Choosing the source current as
in (2.30) we find
JE = wcos(wt)I(o,tf)(t)lI!f(O). (2.46)

Application of the POD approximations to the Debye constitutive law (2.5) relating the polarization P
to the electric field E gives

MEpE + MENE — MENese? = 0. (2.47)
Since the POD basis functions ¥g are global spatially distributed functions, the matrix ME is not
singular, which differs from the finite element formulation.

The combined system of equations is (2.43) and (2.47) is

(ME + ME(eco — 1))eR + MEP® + (nooME + BR)elt + KR = noJgh

PR+ Apft — degef = 0. (2.48)
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Substituting the second equation and its derivative into the first, we obtain
(ME + ME(eso —1))ER +  (NeaMEF + nooME + BE)eR
+  (=N2egME + KE)elt + N2 MEPR = no TR (2.49)
IpE 4+ Xpft — NegIef =0,

where I is the R x R identity. This can be written as a first-order system with the 3R vector variable

z = (ef,pf, ") as B B
M3Rg + K38y = 3R (2.50)
I R OB  OR _JR ek OR
I pR | + | —XegI A OF pR | = or , (2.51)
M et Mf Mf ME ek noJ®
where
ME = ME 4 (e — 1)ME,
ME = —XeME +KE,
ME = xME, (2.52)
Mf = Mg(/\€d+7700)+BR.

The solution to the differential equation system (2.50) can be approximated using a Crank-Nicholson
scheme in the same manner as described above for the FEM differential equation system (2.27).

Inverse problem. We formulate the problem described in detail in [10] of the interrogation of a
Debye dielectric medium with a supraconductive backing by a plane-polarized windowed wave. In the
inverse problem we attempt to determine parameter values of the dielectric material from experimental
measurements at z = 0 of the reflected electric field . This is accomplished by minimizing the L?
difference between the experimental data and simulation results

min

s
FeQ J(®=;|E(tz’,0;@—ﬂ' 2, (2.53)

where S is the number of sample data points E‘,-, at uniform time intervals #;, Q is the set of admissable
parameters, and F(t;,0;7) are the electic field values arising from simulations with parameters ¢. The
vector ¢ typically contains dielectric and/or conductivity parameters characterizing the medium and/or
geometric properties (see [10]).

For our computational testing of the methods and algorithms, synthetic data E; is produced by adding
random noise to the results of FEM simulations with a known set of parameters, i.e.,

E; = Ei(1 + vy), (2.54)

where F; are the values sampled from the solution with known parameters, 7; are independent normally
distributed random variables with mean zero and variance one [10]. The amplitude of the noise is
proportional to the signal level E; and the coefficient v. By choice of v, we can control the relative noise.
For example, 10% relative noise is achieved (with probability 0.9545) by choice of v = 0.05 since 7; lies
in [—20,20] = [-2, 2] (with probability 0.9545).

Minimization of J(q) is performed using a Broyden-Fletcher-Goldfarg-Shanno (BFGS) variable metric
algorithm (dfpmin(), pg. 428 [32]). The gradient of J(§) is obtained from a forward-difference approx-
imation using an algorithm adapted from (fdjac(), pg. 388 [32]). The BFGS algorithm and related
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functions are modified for double-precision. In addition, constraints are added to reflect the physical
limitation of parameters, ie., no negative values. The convergence requirement for zeroing the gradient
is 1 x 10~ for all the minimization problems reported here.

The values E(t;,0;7) appearing in (2.53) are obtained from simulations using either FE or POD basis
elements. Simulation using FE basis vectors is straight-forward, but slow, since the basis vectors are
independent of the parameter values. Minimization of J(§) using simulations with POD basis elements is
faster, but more complicated, since the POD basis elements are generated from snapshots obtained from
FE simulations with specified parameter values. For the minimization problem a collection of snapshots
from simulations covering a range of parameter values (§)) are used to generate the POD basis elements.

Xox = X3k (@) X3k (@) X3k (@)}, (2.55)

where each snapshot represent N nodal values and there are K snapshots each for the electric and
polarization fields per simulation. In general, the simulation results change gradually with changes in
parameter values and the POD modes are still able to efficiently represent the range of data.
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3 COMPUTATIONAL RESULTS

Forward problems. We simulated the interrogation of a dielectric slab with a forward face at z; = 0.33
and a supraconductive backing at zo = 0.89 by a plane-polarized windowed wave using the techniques
outlined above. The mapped region Q) was discretized with N = 450 and L = 150. The dielectric
parameter values were €; = 35, €, = 5, 7= 1 x 107! 5, 0 = 1.0 x 1072 Ohm~!. The signal parameters
were chosen to be: ¢ = 1.8 x 10° s7!, w = 27 x ¢ rad/sec, and ty = % = 3.33 x 107? s. The differential

system was integrated with a step size of d¢t = 1.0 x 10~* ns for a total of ¢f;na = 10 ns.

We experimented with different snapshot intervals for the creation of the POD modes. POD modes
created using a sample rate, or snapshot interval, of 0.005 ns provided an efficient representation of the
data. Figure 2 shows the percent variability captured for the field data (E(t) and P(t)) as a function
of the number of modes at the 0.005 ns sampling interval. Some representative values are 99.099%,
99.962%, and 99.999% for 30, 50, and 72 modes, respectively.

100

90

80

70

60

50

PERCENT VARIABILITY REPRESENTED

40

30 1 1 1 1
0 10 20 30 40 50 60 70

NUMBER OF MODES

Figure 2: Percent of field (E(t) and P(t)) variability represented as a function of the number of modes
used. The sampling interval was 0.005 ns, giving 2001 snapshots for each field.
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We illustrate the efficacy of the POD reduced order representation by simulating the forward problem
using the first 72 POD modes (of 4002 possible modes) generated from snapshots taken at the 0.005 ns
sampling rate.

Figures 3-6 compare electric field results obtained using FEM (N=450 and L=150) and POD (R=72)
simulations. In Figure 3 the electric field is plotted as a function of the mapped distance z at 0.7 ns. At
this time the windowed pulse has not yet reached the dielectric material. Figure 4 depicts the electric
field at 5.0 ns, where there are both reflection and transmission pulses originating from the initial pulse
at z=0. In both cases there is good agreement between the FEM and POD simulations.

200

150

100

50

-100

-150

200 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z (mapped)

Figure 3: The electric field at 0.7 ns as a function of z (mapped) for the FEM simulation (solid line)
and POD simulation (dash-dot line). The POD reduced order model used 70 modes.
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Figure 4: The electric field at 5.0 ns as a function of z (mapped) for the FEM simulation (solid line)
and POD simulation (dash-dot line). The POD reduced order model used 70 modes.
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Figures 5 and 6 show the electric field at 7.0 and 10.0 ns. At these times, only the transmitted portion
of the initial pulse remains. The discrepancies between the FEM and POD simulations are more evident
due to an increase in relative error because of the very small magnitude of the electric field outside the
dielectric material. The Brillouin precursors are evident from the large amplitudes of the forward and
trailing peaks in both figures. There is still excellent agreement between the FEM and POD simulations.

15

_10 - -

20 ! ! ! ! ! ! ! ! !
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Figure 5: The electric field at 7.0 ns as a function of z (mapped) for the FEM simulation (solid line)
and POD simulation (dash-dot line). The POD reduced order model used 70 modes.
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Figure 6: The electric field at 10.0 ns as a function of z (mapped) for the FEM simulation (solid line)
and POD simulation (dash-dot line). The POD reduced order model used 70 modes.



17

The solution time with the POD model (5 min) is significantly less than the solution time required for
the 450 node FE model (272 min). Since the efficiency of the modes is relatively independent of the
number of nodes used, the time savings of the POD reduced order model over the FE model becomes
more significant when more nodes are required.

This point is illustrated in Figure 7, where it can be seen that the FEM solution time is proportional to
the number of nodes squared. Also plotted are the equivalent POD solution times, which are calculated
in the same manner as above. That is, for each N-noded FEM simulation (the parameter values are the
same as above, except t¢inas = 5.0 ns) the POD method is applied to snapshots at 0.005 ns intervals.
The simulation time using the POD formulation with M modes (chosen to capture at least 99.999% of
the variability) is the equivalent POD solution time. Figure 7 shows that the equivalent POD solution
times are relatively independent of the number of FEM nodes.

180

1601 O FEM i
x  EQUIVALENT POD

140 -

120

100

SOLUTION TIME (MIN)
©
=)

[e2]
o

40

20

N? x 10°

Figure 7: The solution time as a function of the number of nodes squared for the FEM (o) with t ¢ina=>5.0
ns. Also shown are the equivalent POD solution times (x), where the number of modes captures at least
99.999% of the data variability. In both cases, data points are connected by straight lines.
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Inverse problem: Example I. We turn to computational findings for a one parameter (e¢5) problem
of the interrogation of a dielectric slab with a supraconductive backing by a plane-polarized windowed
wave. In the inverse problem we attempt to determine the parameter values () of the dielectric material
from measurements of the electric field at z = 0. The dielectric slab dimensions and parameters are the
same as above in the forward problem, except for N = 150, L = 50, and t; = % =1.11x10"°.

In this example, we investigate the inverse problem for the single unknown parameter €5 in the range
31 < €5 < 39. Three FE simulations (e; = 31,33, and 39) each with K = 501 snapshots of the N — 1
nodal values for the electic and polarization fields are used to obtain the POD basis elements for the
minimization problem

XN = {X N es = 31) XD (es = 35) X' (es = 39)}. (3.56)
The elecric field is measured at 0.01 ns intervals from 0 < ¢ < 5 ns. Figure 8 shows the observed values
of the electric field at z = 0 as a function of time.
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150 - |

100 H § g i
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ELECTRIC FIELD AT Z

-100} : : |

-150 .

-200 | | : | | - |
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
TIME (ns)

Figure 8: The observed electric field at z=0 as a function of time. Measurements are made at 0.01 ns
intervals from 0 to 5 ns.
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The ability of the POD formulation to recover the true values in the inverse problem is investigated
as a function of the number of modes used (Fig. 9). The following conditions were used to obtain
these results: 0% noise, €,(true)=33, e,(initial)=37, and J(§) minimized with respect to observation
measurements from times 0 < ¢t < 3.5 ns. As expected, the relative error generally decreases as the
number of modes increases. Oscillations may be due to the influence of the addition of particular modes
with respect to the true parameter value. As Fig. 9 indicates, the relative error decreases slowly after
approximately 50 modes.

O Data
O —— Cubic smoothing spline

PERCENT RELATIVE ERROR

-1 1 1 1
20 30 40 50 60 70 80
NUMBER OF MODES

Figure 9: The percent relative recovered parameter error (100|es(true) -es(recovered))/es(true)|) as a
function of the number of modes (circles). The curve drawn through the data is a cubic smoothing
spline (csaps in Matlab) with smoothing parameter equal to 0.1
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We next investigated the ability of the POD formulation to recover €5 with a noisy signal and a fixed
number of modes (60). Figure 10 gives an example of the observed electric field without noise and with
5% noise added. In this case €, = 33.

Example of observed and noisy signal at 5% error
T T T T T T T
—— Noisy
True

190

180

170

160~

150

140

130

120

|
30 40 50 60 70 80 90 100 110
Observations

Figure 10: A portion of the observed electric field at z=0 with 5% noise (solid line) and without added
noise (dashed line), for €;(true) = 33.
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The accuracy of the POD formulation in the above inverse problem with one unknown parameter (es)
is compared to the FEM formulation in Fig. 11, where the relative error is plotted as a function of the
percent noise in the signal. For basis of comparison, the same seed (-123456) for the random number
generator is used for all cases with non-zero noise. In general the relative error increases linearly with
respect to the percent noise for both the POD and FEM formulations. Except at the zero percent noise
level, the POD method is slightly more accurate than the FEM formulations. We attribute this to
serendipity rather than any remarkable methodological principle.

T T
4l [-e- POD
—— FEM

w
T

es(true) =39

N
N (6]
T T

% RELATIVE ERROR
o

ss(true) =33

0.5

1
0 2 4 6 8 10 12 14 16 18 20
% NOISE

Figure 11: The percent relative recovered parameter error (100|es(true) -€5(recovered))/es(true)|) as a
function of the percent noise for the POD (o, 60 modes) and FEM (x) formulations. In both case data
points are connected by straight lines.

A plot of the ratio of FEM solution times to POD solution times illustrates the time savings offered by
the POD method. As Fig. 12 indicates, the POD method is most efficient at the 0% noise level where it
is nine times faster than the FEM formulation. As the noise level increases the POD efficiency decreases,
eventually reaching a 5.4-fold time saving at the 15% noise level. The POD times are not changing much
as the noise level changes, but the FEM solution times decrease somewhat.
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Figure 12: The ratio of solution times (Trrap/Tpop) as a function of the percent noise. The data
points are connected by straight lines.

Inverse problem: Example II. In this example, we investigate the inverse problem with 7 as the single
unknown parameter. The problem conditions are the same as in the previous example, except that now
we employ fixed €, = 35 and 7 is varied. Three FE simulations (7 = 1 x 10721 x 10~!! and 1 x 10719)
each with K = 501 snapshots of the N — 1 nodal values for the electic and polarization fields are used
to obtain the POD basis elements for the minimization problem

Xt ={xN r=1x10"") XM (r=1x10"") XN (r=1x10""0)}. (3.57)

The ability of the POD formulation to recover the true values in the inverse problem is plotted as a
function of the number of modes used in Fig. 13. The following conditions were used in these results:
0% noise, T(true)=5 x 10~ r(initial)=3.5 x 107", and J(¢) minimized with respect to observation
measurements from times 0 < ¢t < 3.5 ns. The relative error generally decreases as the number of
modes increases. As in the previous example, oscillations may be due to the influence of the addition
of particular modes with respect to the true parameter value. The relative error decreases slowly after
approximately 40 modes, where it is already under 1%.
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Figure 13: The percent relative recovered parameter error (100|7(true) -7(recovered))/7(true)|) as a
function of the number of modes (circles). The curve drawn through the data is a cubic smoothing
spline (csaps in Matlab) with smoothing parameter equal to 0.1

The accuracy of the POD formulation with 7 unknown is compared to the FEM formulation in Fig. 14,
where the relative error is plotted as a function of the percent noise in the signal. For basis of comparison,
the same seed (-123456) for the random number generator is used for all cases with non-zero noise. As
expected, the relative error increases with respect to the percent noise for both the POD and FEM
formulations. The FEM method is more accurate than the POD at low noise levels. However, above the
5% noise level the POD method is increasingly slightly more accurate than the FE method.
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Figure 14: The percent relative recovered parameter error (100|7(true) -7(recovered))/r(true)|) as a
function of the percent noise for the POD (o, 60 modes) and FEM (x) formulations. In both case data
points are connected by straight lines.

A plot of the ratio of FEM solution times to POD solution times illustrates the time savings offered by
the POD method. As Fig. 15 indicates, the POD method is 4.5 to 8 times more efficient than the FEM
formulation. Variations in the efficiency are largely due to variations in the solution times for the FEM.
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Figure 15: The ratio of solution times (Trram/Tpop) as a function of the percent noise. The data
points are connected by straight lines.

Inverse problem: Example ITII. In this example both parameters e€; and 7 are simultaneously sought
in a two parameter inverse problem. Except for €, and 7, simulation conditions were the same as in in the
one parameter inverse problems above. The elecric field is measured at 0.01 ns intervals from 0 < ¢t < 5
ns. Nine FE simulations (combinations of €, = 31,33,39 and 7 = 1 x 107121 x 1071 x 1071) each
with K = 501 snapshots of the N = 149 nodal values for the electic and polarization fields are used to
obtain the POD basis elements for the minimization problem.

Figures 16 and 17 summarize the two parameter inverse results under the following conditions €, (true)=33,
€s(initial)=37, 7(true)=5x 10~1!, 7(initial)=3.5x 10~ !, and J(§) minimized with respect to observation
measurements from times 0 < ¢ < 3.5 ns.

Figure 16 plots the relative error for the recovered s values as a function of the noise level (0-20%) for
the POD and FEM methods. From Fig. 16 it can be seen that the FEM results are generally more
accurate than the POD results, but that the relative error for both is under 0.2%. The relationship
between the relative error and the noise level appears to be nonlinear, unlike the one parameter recovery
of €.
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Figure 16: The percent relative recovered parameter error (100|e,(true) -e,(recovered))/es(true)|) as a
function of the percent noise for the POD (o0, 50 modes) and FEM (x) formulations. Data points are
connected by straight lines.

Figure 17 plots the relative error for the recovered 7 values as a function of the noise level (0-20%) for
the POD and FEM methods. The relative error appears to be roughly linear with respect to the noise
level for both POD and FEM formulations. The relative error for both formulations do not differ greatly
except at the 20% noise level. The relative error for recovery of 7 (0-16%) is about ten times greater
than the relative error associated with the recovery of €5 (0-0.16%). (This agrees with relative sensitivity
of the model to the parameters seen in [10].)
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Figure 17: The percent relative recovered parameter error (100|7(true) -7(recovered))/r(true)|) as a
function of the percent noise for the POD (o0, 50 modes) and FEM (x) formulations. Data points are

connected by straight lines.

Figure 18 plots the ratio of the FEM simulation times and the POD simulation times as a function
of noise (0-20%). The POD formulation is 4-10 times faster than the FE method. The time savings

generally decrease as the noise level rises.
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Figure 18: The ratio of solution times (Trrrm/Tpop) as a function of the percent noise for the two
parameter inverse problem. The data points are connected by straight lines.

4 REMARKS AND CONCLUSIONS

The saving in solution time using the reduced order POD formulation instead of the FEM formulation
is most evident as the number of nodes increases. The solution times scales as N2, where N is the
number of FEM nodes or POD modes. However, the number of modes necessary to capture the physical
behavior is relatively independent of the number of nodes used to generate the data.

The POD method is significantly faster than the FEM method for inverse problems. The POD method
(50 modes) is 4-10 times faster than the FEM (149 nodes) in the two parameter (e, and 7) inverse
problem and in the single parameter (e or 7) inverse problem. Based on our results from the forward
simulation problems (where savings using POD over FEM dramatically increased as N increased, e.g.,
50 fold speed up for N = 450), we expect the speed up in inverse problems to dramatically increase in
more complex problems (e.g., 2-D and 3-D problems) where an increasing number of basis elements are
required.

One of the difficulties with using the POD method for inverse problems is in the construction of the
POD modes. Memory and time limitations become significant as the number of parameters is increased
in a time-dependent problem such as reported here. If, in a N-noded simulation, a time series of (M)
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snapshots is generated at three representative values spanning the desired range of each parameter, there
are a total of 3? M N snapshots. On the PC used for these calculations there is a memory limitation of
approximately 6000 snapshots (N = 150) in the algorithm used to construct the POD modes. As an
example of the time-limitiation, construction of POD modes for the case of N = 150 and 5010 snapshots
required 18 hours and 20 minutes to complete. Current efforts and ideas to alleviate these aspects of
difficulties are being pursued by others as well as our group at NCSU.

The findings in this paper offer great potential and encouragement for our ongoing efforts in higher
dimensional problems where a number of significant computational difficulties might be alleviated by
use of a reduced order methodology for transient electromagnetic inverse problems.
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